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Abstract

Cantilevered thin flexible plates in subsonic axial flow may lose dynamic stability at sufficiently high flow velocity. Once

the critical point is exceeded, flutter takes place, and the flutter amplitude grows as the flow velocity is further increased.

Richer dynamics are obtained for modified forms (‘‘variants’’) of this basic system. In particular, in the present paper four

cases are considered: with (i) gravity, (ii) a spring support of either linear or cubic type, (iii) a concentrated mass mounted

on the plate, and (iv) a small oscillating incidence angle in the undisturbed flow. For each specific variant of the basic

system, the influence of these added features is investigated; e.g., for the spring support and concentrated mass the effects

of magnitude and/or location are discussed. Some interesting phenomena found in the dynamics of these variants of the

system are summarized in this paper.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of thin cantilevered flexible plates in axial flow is one the classical problems of Applied
Mechanics [1]. Some of the early work was concerned with the flapping of flags [2,3] and the dynamics of
aircraft and missile skins, particularly in supersonic flow [4]. More recently, there has been renewed interest in
the dynamics of cantilevered, typically long, plates in incompressible flow, not only as an abstract problem,
but also for engineering applications, e.g., in paper-making [5–7], for electricity generation [8], for aircraft
control [9] and in biomimesis [10].

The present paper summarizes some recent research conducted by the authors on the dynamics of two-
dimensional thin cantilevered plates in subsonic axial flow. The two-dimensional plate is modelled as a beam
with an inextensible centreline, and an unsteady lumped vortex model is used to calculate the pressure
difference across the oscillating plate. The analysis of system dynamics is carried out in the time-domain.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The system loses stability by flutter at sufficiently high flow velocity, and both the instability threshold, as a
function of the system parameters, and the post-critical behaviour of the system have recently been studied
extensively by Tang and Paı̈doussis [11].

Four variants of the system are studied in the present paper: in the presence of (i) gravity, (ii) a spring
support, linear or nonlinear, somewhere along the plate, (iii) a concentrated mass at various locations along
the length of the plate, and (iv) a small oscillating angle of incidence of the undisturbed flow. This research is
not only curiosity-driven; it is also related to the design of a new type energy-harvesting device, which is
presented in another paper by the same authors [12]. It will be shown in the present paper that the dynamics of
the system, taking into account gravity, a spring support, a concentrated mass or an oscillating incidence
angle, is qualitatively altered; moreover, some interesting phenomena can be observed, not present in the basic
system (in the absence of these features).
2. The basic system

A schematic diagram of a cantilevered flexible plate in axial flow is shown in Fig. 1. The geometrical
characteristics of the rectangular homogeneous plate are the length of the flexible section L, width B and
thickness h; B!1 and h5L for a two-dimensional thin plate. Normally, there is a rigid segment of length L0

as part of the clamping arrangement at the upstream end. The other physical parameters of the system are the

plate material density rP and bending stiffness D ¼ Eh3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þ

p
(where E and n are, respectively,

Young’s modulus and the Poisson ratio of the plate material), the fluid density rF , and the undisturbed flow
velocity U. As shown in Fig. 1, W and V are, respectively, the transverse and longitudinal (axial) displacements
of the plate. FL and FD are the aero/hydro-dynamic loads acting on the plate in the transverse and
longitudinal directions, respectively; S is the distance of a material point on the plate from the origin,
measured along the plate centreline in a coordinate system embedded in the plate. Moreover, material
damping of the Kelvin–Voigt type is considered with the loss factor denoted by a.

The equations of motion of the plate can be written in nondimensional form as [11]

€wþ 1þ a
q
qt

� �
½w0000ð1þ w0

2
Þ þ 4w0w00w000 þ w00

3
�

þ w0
Z s

0

ð _w02 þ w0 €w0Þds� w00
Z 1

s

Z s

0

ð _w02 þ w0 €w0Þds

� �
ds ¼ f eff , (1)
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Z s

0

w0
2
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f eff ¼ mU2
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Z 1

s

f D ds

� �
, (3)

where the overdot and the prime represent qð Þ=qt and qð Þ=qs, respectively. The nondimensional variables are
defined by
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Fig. 1. A cantilevered flexible plate in axial flow.
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t ¼
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rPhL4=D

q ; a ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rPhL4=D

q ; f %
¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
,

f L ¼
F L

rF U2
; f D ¼

F D

rF U2
, (4)

where f % and f are, respectively, nondimensional and dimensional vibration frequencies. Moreover, the mass
ratio m and the reduced flow velocity UR are defined by

m ¼
rF L

rPh
; UR ¼ UL

ffiffiffiffiffiffiffiffi
rPh

D

r
. (5)

In Eq. (3), the aero/hydro-dynamic loads are calculated using the unsteady lumped vortex model [11]. On each
individual panel, the nondimensional pressure difference across the plate Dp is first computed and then
decomposed into the lift f L and the drag f D. That is

f Li ¼ Dpi cos ai; f Di ¼ Dpi sin ai þ CD, (6)

where ai is the angle of incidence of the ith panel. An additional drag coefficient CD, uniformly distributed
over the length of the plate, may be considered in f D to account for the viscous effects of the fluid flow (refer to
Ref. [11] for details).

The analytical model of the basic system has first been validated against available experimental data for the
flutter threshold. It has been shown that the level of agreement is superior to that achieved by other theories
[11], though still not sufficiently good—with theory generally under-predicting the flutter threshold. This
discrepancy between theoretical predictions and experimental observations has been attributed to the lack of a
proper accounting of (viscous) aero/hydro-dynamic drag in the theory, which would increase the tension in the
plate and thus the stability threshold of the system. Another prominent ‘‘weakness’’ of all theories, including
ours, is that they fail to predict the subcritical nature of the bifurcation and the strong hysteresis observed in
the experiments [13,14]. One possible explanation may be that all experiments are conducted in a wind or
water tunnel, while theories (e.g., Refs. [11,14]) normally consider open flow. However, the reason causing the
observed subcritical bifurcation may be more complex (see Ref. [11] for details); the exact underlying
mechanism is still an open question.

As already shown in Ref. [11] for a specific system with m ¼ 0:2, the dynamics of the basic system, without
gravity or an oscillating incidence angle and without additional springs or masses, is relatively simple. When
UR is below the critical point URc, the plate remains straight; any small disturbance to the system is
attenuated. Once UR exceeds URc, flutter occurs, and the flutter amplitude grows as UR increases further.

3. With gravity

No gravity is considered for the basic system (see Eqs. (1) and (3)) because the plate is set up in the so-called
‘‘vertical configuration’’ [11]; the gravitational force is in the negative Z-direction of Fig. 1. However, when a
plate is in the ‘‘horizontal configuration’’ [11] with the gravitational force pointing to the negative Y-direction,
as in the design of a flexible control surface [9], it has to be taken into account. It follows that the effective
force f eff acting on the plate, i.e., Eq. (3) should be rewritten as

f eff ¼ mU2
R f L � w0f D þ w00

Z 1

s

f D ds

� �
� gG. (7)

In Eq. (7), gG is the gravity parameter, accounting for the ratio of the gravitational force to the restoring force
of the plate, defined by

gG ¼
ðrP � rF ÞhgL3

D
, (8)

where g is the gravitational acceleration.
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To determine the value of the gravity parameter, the experiments conducted by Tang et al. [14] for a (basic)
system set up in the vertical configuration are considered; supposing that only the plate length L varies, one
obtains the corresponding values of m and gG as listed in Table 1. It should be noted that, when the parameters
rP ¼ 2:84� 103 kg=m3 (aluminium-7075), rF ¼ 1:226 kg=m3 (air), h ¼ 3:9� 10�4 m and D ¼ 0:383Nm of the
system are fixed, the mass ratio m is proportional to L; while, the gravity parameter gG is proportional to L3.

The influence of the gravitational force on the stability of the system is first examined using the parameters
of Table 1. It can be seen in Table 2 that the system generally has a higher critical point URc (note that flutter
Table 1

The mass ratio m and gravity parameter gG of the system.

L ðmÞ m ¼ ½rF=ðrPhÞ�L gG ¼ ½ðrP � rF Þgh=D�L3

0.181 0.2 0.167

0.452 0.5 2.61

1.81 2 167

Table 2

The influence of the gravitational force on system stability.

m gG URc UR
%

c ðURc �UR
%

c Þ=UR
%

c (%)

0.2 0.167 9.92 9.92 0

0.5 2.61 6.95 6.91 0.58

2 167 11.88 10.89 9.09
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Fig. 2. The dynamics of horizontal system subject to gravity: (a) bifurcation diagram, (b) buckled states when URoURc, (c) modes of

small amplitude flutter at UR ¼ 10:48, and (d) modes of large amplitude flutter at UR ¼ 13:42. The other parameters are m ¼ 0:2,
l0 ¼ 0:01, a ¼ 0:004, CD ¼ 0 and gG ¼ 2:5. In subfigure (a): solid line, gG ¼ 2:5; dashed-line, gG ¼ 0 (i.e., the basic system). In subfigure

(b), the lines with various symbols: circle, UR ¼ 0:02; square, UR ¼ 3:16; diamond, UR ¼ 4:47; up-triangle, UR ¼ 6:32; left-triangle,
UR ¼ 9:95.
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takes place when UR4URc) than its counterpart UR
%

c for the basic configuration, in which gravity is
inoperative. Moreover, when the value of m is small (i.e., the plate is short), gG is also small and so is the
influence of the gravitational force. However, as gG increases sharply with increasing L, the gravitational force
has a significant effect on the system dynamics for systems with a relatively large value of m (i.e., the plate is
relatively long). For example, when m ¼ 2, URc ¼ 11:88 and UR

%

c ¼ 10:89; the increase is as large as 9:09%.
Some aspects of the dynamics for m ¼ 0:2 are illustrated in Fig. 2, where the gravity parameter is arbitrarily

chosen as gG ¼ 2:5 (considerably larger than gG ¼ 0:167 in Table 2). It can be seen in Figs. 2(a) and (b) that the
plate is buckled, by the effect of gravity alone, when UR ¼ 0; it remains buckled for all values of UR until the
onset of flutter. Note that, when UR is close to zero, say UR ¼ 0:02 as shown in Fig. 2(b), the cantilevered
flexible plate is statically deflected without flow. It is found that the shape of the buckled plate is always in the
first beam mode for this case. With increasing UR, the amplitude of the static deflection decreases; that is, the
plate is elevated by the aero/hydro-dynamic loads and becomes flatter. Obviously, the buckled form of
the plate is defined by the balance between four distributed forces: the gravitational force, the restoring force
and the aero/hydro-dynamic lift f L and drag f D achieved for the buckled shape of the plate. Note that the drag
force f D results in the tension in the plate (see Eqs. (3) and (4) in Ref. [11]). As UR is increased further, flutter
takes place; the critical reduced flow velocity is URc ¼ 9:98, as seen in Fig. 2(a), which is a little higher than
UR

%

c ¼ 9:92 for the basic configuration. Moreover, it is interesting to find that flutter occurs directly from the
buckled state; a stable flat state does not occur. Finally, when UR exceeds the critical point, the flutter
8             10               12             14
UR

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

lo
ca

l m
ax

(w
(s

=1
))

0.0                    0.5                    1.0
x

-0.4

-0.2

0.0

0.2

w

0.0                    0.5                     1.0
x

-0.2

-0.1

0.0

0.1

w

0.0                     0.5                     1.0
x

-0.10

-0.05

0.00

0.05

0.10

0.15

w

9       10     11      12
UR

-0.10

-0.08

-0.06

-0.04

w
(s

=1
)

(b)(a)

(c) (d)

Fig. 3. The dynamics of horizontal system subject to gravity: (a) bifurcation diagram, (b) buckled states when URoURc, (c) modes of

small amplitude flutter at UR ¼ 12:04, and (d) modes of large amplitude flutter at UR ¼ 13:2. The other parameters are m ¼ 2, l0 ¼ 0:01,
a ¼ 0:004, CD ¼ 0 and gG ¼ 167. In subfigure (a): solid line, gG ¼ 167; dashed-line, gG ¼ 0 (i.e., the basic system). In subfigure (b), the lines

with various symbols: circle, UR ¼ 9:92; square, UR ¼ 9:49; diamond, UR ¼ 10:0; up-triangle, UR ¼ 10:5; left-triangle, UR ¼ 11:0; down-
triangle, UR ¼ 11:4; right-triangle, UR ¼ 11:8.
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amplitude increases with increasing UR. Due to the influence of the gravitational force, the vibration modes of
the system are not symmetric with respect to the mean flow axis (i.e., the x-axis).

As one can see in Table 1, the value of the gravity parameter gG increases very quickly as m increases. The
dynamics of the system with m ¼ 2 and gG ¼ 167 are shown in Fig. 3. From the bifurcation diagram of
Fig. 3(a), the critical point in this case is URc ¼ 11:88, which is considerably larger than UR

%

c ¼ 10:89 for
gG ¼ 0. When UR4URc, flutter takes place. As shown in Figs. 3(a), (c) and (d), the flutter amplitude increases
with increasing UR, and the vibration modes of the system are strongly asymmetric. The buckled states of the
plate for URoUR

%

c are shown in Fig. 3(b). It is very interesting to see that, when UR approaches UR
%

c from
below, the plate is buckled in the second beam mode, in contrast to situation shown in Fig. 2(b) where the
plate is buckled with a predominantly first-beam-mode shape. Moreover, in this case also, the static deflection
of the plate is diminished with increasing UR. But as the amplitude of buckling decreases, its shape becomes
more complex, with the appearance of a third-beam-mode component. Accordingly, in the bifurcation
diagram of amplitude of the plate tip versus UR in Fig. 3(a), the curve first goes up and then somewhat drops
with increasing UR before the onset of flutter. It should be mentioned that, unlike the case shown in Fig. 2 for
m ¼ 0:2 and gG ¼ 2:5 where the static deflection of the plate as UR ! 0 can be obtained, for the case m ¼ 2 and
gG ¼ 167 shown in Fig. 3, the present theory fails when URo8:94: when the flow velocity is too low to lift the
plate, the gravity-induced deflection is too large for the present structural model (Eqs. (1) and (2)) to yield a
solution.

4. With a spring support

A schematic diagram of a cantilevered flexible plate with an additional (linear or cubic) spring support in
axial flow is shown in Fig. 4, where SS is the location of the spring, F S ¼ �KLW ðSSÞ � KCW ðSSÞ

3 is the
spring force acting on the plate, and KL and KC are the stiffnesses of the linear or cubic spring, as the case may
be. When the vibration amplitude is large, the longitudinal displacement of the plate, V, becomes important.
In the present paper, the additional spring support is assumed to be free to move longitudinally with the plate;
only transverse spring forces are considered. Therefore, the equations of motion of the plate are still given by
Eqs. (1) and (2). However, instead of Eq. (3), the effective force f eff acting on the plate should be calculated by

f eff ¼ mU2
R f L � w0f D þ w00

Z 1

s

f D ds

� �
þ f Sdðs� sSÞ, (9)

where d denotes the Dirac delta function, and sS ¼ SS=L is the location of the additional spring support
normalized by the length of the flexible plate L. The nondimensional spring force f S is given by

f S ¼
L3

D
FS ¼ �kLwðsSÞ � kCwðsSÞ

3, (10)

where kL and kC are, respectively, the nondimensional stiffnesses of the linear and the cubic spring, defined by

kL ¼
L4

D
KL; kC ¼

L6

D
KC ; (11)
U
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h
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Linear−cubic springs

Fig. 4. A cantilevered flexible plate with an additional spring support in axial flow.
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which represent the ratios of the spring forces to the flexural restoring force of the plate. It is stressed that in
the calculations the spring is either linear or cubic, so that either kC or kL is zero in Eq. (10).

When a linear spring support is added, the plate may lose stability statically (by buckling or divergence
instability) rather than by flutter. Stability diagrams of the system with an additional linear spring support at
sS ¼ 1 and 0:8 are shown in Figs. 5 and 6, respectively. It is obvious that the system dynamics is dependent not
only on the stiffness but also on the location of the spring.

When the linear spring support is located at sS ¼ 1, it can be seen in Fig. 5 that the plate loses stability
through flutter at various values of UR, provided kLo59; loss of stability through divergence (buckling)
occurs when kL459. For kLo59, the value of URc increases with increasing kL. On the other hand, when
kL459, URc decreases as kL increases; however, with further increase in kL, a plateau is reached at
URc ¼ 11:30, as shown in the inset of Fig. 5. This implies that a clamped/simply supported plate in axial flow
will lose stability through buckling at URc ¼ 11:30 for the particular values of m, l0, a and CD used in the
calculations (see the caption of Fig. 5), since the linear spring support is equivalent to a simple support when
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Fig. 5. Stability diagram of a cantilevered flexible plate in axial flow with an additional linear spring support at the plate trailing edge, i.e.,

sS ¼ 1. The system parameters are m ¼ 0:2, l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0. The spring force is given by f S ¼ �kLwðs ¼ 1Þ.
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Fig. 6. Stability diagram of a cantilevered flexible plate in axial flow with an additional linear spring support at sS ¼ 0:8. The system

parameters are m ¼ 0:2, l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0. The spring force is given by f S ¼ �kLwðs ¼ 0:8Þ.
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kL !1. Moreover, when kL459, the plate may develop flutter at higher values of UR, beyond the onset of
buckling. It can be shown that all the limit cycle oscillations observed in the flutter region of Fig. 5 are of the
symmetric type. At a given value of kL, the flutter amplitude grows with increasing UR. The plate cannot
develop divergence (buckling) thereafter, beyond the flutter threshold in this range of kL.

As seen in Fig. 6, the three stable states (i.e., stable flat state, static buckling and flutter) can also arise when
sS ¼ 0:8. The plate loses stability through flutter when kLo193. For a range of kL around kL ¼ 193,
divergence may succeed flutter at higher UR. But, when kL4193, the primary instability is buckling; flutter
never takes place, no matter how large UR is. Again, only symmetric limit cycle oscillations are found in the
flutter region; at a fixed value of kL, the flutter amplitude grows as UR increases. A very interesting stronger-
constraint/less-stable-system phenomenon can be observed in Fig. 6: the system loses stability at a lower
critical point URc when 0okLo106 than when kL ¼ 0. In fact, when 0okLo56, the value of URc decreases as
kL increases.

If the additional spring support is cubic, it can be seen in Fig. 7 for the case sS ¼ 0:8 and kC ¼ 6000 that the
system exhibits richer dynamics. The system still loses stability through flutter, but in a very abrupt manner, at
URc ¼ 9:92. After the primary bifurcation, the system develops symmetric limit cycle oscillations, before a
secondary bifurcation takes place at UR ¼ 15:33; beyond this point, the limit cycle oscillations become
asymmetric. In the region of period-1 asymmetric limit cycle oscillation (i.e., 15:33oURo17:86), it is
interesting to see that the flutter amplitude of the plate trailing edge decreases with increasing UR. A series of
period-doubling bifurcations take place at UR ¼ 17:86; 18:49 and 18:74, followed by chaotic motions for
18:81oURo19:62. However, as UR is increased further, regular limit cycle oscillations re-emerge; another
period-doubling route to chaos can be observed in the region 19:62oURo21:10. The main region of chaos is
for 21:10oURo23:45; there is a periodic window between UR ¼ 22:36 and 22:56. Finally, the plate becomes
statically buckled when UR423:45.
5. With a concentrated mass

When there is an additional concentrated mass mA at SM on the plate, as illustrated in Fig. 8, the equation
of motion of the plate, i.e., Eq. (1), should be rewritten as

½1þ sMdðs� sMÞ� €wþ 1þ a
q
qt

� �
½w0000ð1þ w0

2
Þ þ 4w0w00w000 þ w00

3
�

þ ½1þ sMdðs� sMÞ�w
0

Z s

0

ð _w02 þ w0 €w0Þds

� w00
Z 1

s

½1þ sMdðs� sMÞ�

Z s

0

ð _w02 þ w0 €w0Þds

� �
ds ¼ f eff , (12)

where the mass parameter sM is defined by

sM ¼
mA

rPhL
; (13)

it is the ratio of the concentrated mass to the mass of the plate itself (in the sense of the per-unit-width mass).
Moreover, sM is the location of the concentrated mass, normalized by the length of the flexible plate L, i.e.,
sM ¼ SM=L.

The influence of an additional concentrated mass for various values of sM and sM on stability is shown in
Fig. 9. It can be seen in Fig. 9(a) that a small concentrated mass sM ¼ 0:01 at a variety of locations along the
length of the plate has different effects on the critical point. When there is no additional mass, i.e., for sM ¼ 0
(equivalent to the basic configuration), URc ¼ 9:92. When sMo0:4, the value of URc decreases slightly with
increasing sM . When 0:4osMo0:7, URc grows with increasing values of sM and reaches the maximum URc ¼

9:97 at sM ¼ 0:7. Beyond this maximum point, URc decreases again, more precipitously this time, as sM

increases further; finally, a minimum URc ¼ 9:70 is reached when the concentrated mass is at sM ¼ 1.
When sM ¼ 0:75 or 1 while sM is varied, the flutter boundaries obtained are shown, respectively, in

Figs. 9(b) and (c). It can be seen in Fig. 9(b) that, when sM ¼ 0:75, the value of URc increases monotonically
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diagram; (b) enlargement of the block in (a); and, (c–n) the phase-plane plots at various values of UR: (c) 14.14, (d) 17.32, (e) 18.17, (f)

18.71, (g) 18.79, (h) 19.49, (i) 20.74, (j) 20.95, (k) 21.02, (l) 21.21, (m) 21.91, and (n) 22.47. The system parameters are m ¼ 0:2, l0 ¼ 0:01,
a ¼ 0:004 and CD ¼ 0. The spring force is given by f S ¼ �kCw3ðs ¼ 0:8Þ, where kC ¼ 6000.
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from URc ¼ 9:92 for sM ¼ 0 to URc ¼ 12:96 for sM ¼ 1. When sM ¼ 1, the relation between URc and sM

becomes complicated: as shown in Fig. 9(c), URc decreases significantly with increasing sM for 0osMo0:1;
however, for 0:1osMo0:2, the variation in URc is negligibly small, and a plateau is formed where URc ¼ 8:70.
As sM is increased further, the trend for URc is reversed; and, finally URc ¼ 10:04 when sM ¼ 1. The pattern
of the flutter boundary presented in Fig. 9(c) may be correlated to the vibration modes of the plate along the
flutter boundary, as shown in Fig. 10. It is seen that, when sM is small, say sMo0:2, the mode shapes of the
plate in Figs. 10(a)–(e) are qualitatively the same; they are combinations of the first and second beam-mode
shapes. In contrast, when sMX0:3, as shown in Figs. 10(f)–(h), the vibration modes are mostly of second-
beam-mode shape, and a quasi-stationary node becomes more prominent.

It has been observed in Fig. 9(a) that a small additional concentrated mass sM ¼ 0:01 located at sM ¼ 1
significantly reduces the value of critical point; moreover, as shown in Fig. 11, it also affects the manner of the
onset of the flutter and the post-critical dynamics of the system. It is seen in Fig. 11(a) that, as compared to the
post-critical behaviour of the basic configuration, flutter takes place in a more abrupt manner; and, beyond
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the critical point, the flutter amplitude is rather large. This phenomenon may imply the occurrence of a
subcritical bifurcation instead of a supercritical one.

With a small concentrated mass sM ¼ 0:01 located at sM ¼ 1, symmetric limit cycle oscillations can still be
observed at higher UR beyond the critical point URc ¼ 9:70, as shown in Figs. 11(b), (d) and (g) for the case
UR ¼ 10:37 for example. Note that the flutter amplitude of the system with an additional concentrated mass is
significantly larger than that without, even though sM ¼ 0:01 is so small. As UR increases further and exceeds
UR ¼ 10:43, chaos takes place, as shown in Figs. 11(e) and (h) for UR ¼ 10:49 where chaotic motions start to
emerge, and in Figs. 11(f) and (i) for UR ¼ 10:95 where the dynamics of the system is fully chaotic.

A conventional route to chaos cannot be identified from the bifurcation diagram of Fig. 11(a). Closer
examination of the dynamics regarding the onset of chaotic motions reveals that the rear part of the plate may
whip forward, as illustrated by the two deformed shapes of the plate shown in thicker lines in Fig. 11(c) for the
vibration modes of the system at UR ¼ 10:49; corresponding spikes in the phase-plane plot can be observed in
the blocked region in Fig. 11(h). The spikes in the phase-plane plot can be more clearly observed in the two
blocked regions in Fig. 11(i) for UR ¼ 10:95; the occurrence of one of these spikes is carefully studied in
Fig. 12, where the time history, a section of the phase-plane plot and the vibration modes of the system are
presented. It can be seen in Fig. 12(b) that a spike occurs at the point of the intersection of segments (1) and (2)
in the section of the phase-plane plot. Note that, segments (1)–(3) can also be identified in Figs. 12(a) and
(c)–(e); no spike-like phenomena are observed. That is, the spikes are likely not caused by numerical errors, as
no corresponding jump or discontinuity is found in the time history and the vibration modes. Instead, as one
can see from Figs. 12(c) and (d), the spike is caused by a jerk in the motion when the trailing edge of the plate
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Fig. 11. The dynamics of the system with a small concentrated mass located at the trailing edge of the plate, i.e., sM ¼ 0:01 and sM ¼ 1.

(a) Bifurcation diagram; (b) vibration modes at UR ¼ 10:37; (c) vibration modes at UR ¼ 19:49; (d–f) Poincaré maps at various values of

UR: (d) UR ¼ 10:37, (e) 10.49, and (f) 10.95; and, (g–i) phase-plane plots at various values of UR: (g) UR ¼ 10:37, (h) 10.49, and (i) 10.95.

The other parameters of the system are m ¼ 0:2, l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0. Note that the Poincaré maps are obtained by

simultaneously recording the position and the velocity of the trailing edge of the plate with wðs ¼ 0:5Þ ¼ 0 as the controlling event. In

subfigure (a): dot, the case sM ¼ 1 and sM ¼ 0:01; solid line, the case without end-mass (i.e., the basic system).
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is close to its local maximum amplitude (in the positive sense for the specific spike studied in Fig. 12): the small
variations in the vibration modes are accompanied by large changes in the vibration velocity. Finally, it should
be mentioned that the wrapped-around mode shapes predicted by the present theory may not be physically
correct in terms of modelling of the fluid flow: there is concern in this case as to what extent the lumped vortex
model [11] can be used to calculate the aero/hydro-dynamics at such large deflections of the plate.
Nevertheless, the analysis herein provides a very interesting case of chaotic motions in conjunction with
complex evolution of the mode shapes of the system.

6. With a small oscillating incidence angle

It is of interest to study the dynamics of the system when the undisturbed flow itself has an unsteady
component, specifically a small oscillating component. For example, as shown in Fig. 13, the undisturbed flow
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is considered to be not exactly parallel to the neutral plane of the plate (as compared to Fig. 1) although its
speed is still U; it is supposed that the mean incident flow oscillates harmonically, with amplitude aU and
frequency f aU

.
With a small oscillating incidence angle, the undistributed flow velocity can be decomposed into two parts in

the fixed X–Y coordinate system as shown in Fig. 13, i.e.,

ux ¼ cos½aU cosð2pf %

aU
tÞ�; uy ¼ sin½aU cosð2pf %

aU
tÞ�, (14)

where ux and uy are, respectively, the flow velocity components in the x and y directions, normalized by U; f %

aU

is the nondimensional counterpart of f aU
(refer to Eq. (4)). It follows that, when calculating the fluid loads, the

aero/hydo-dynamics model of the system [11] should accordingly be modified to take into account both ux and
uy. Moreover, it should be emphasized that a simplified model of the vortical wake behind the cantilevered
flexible plate is adopted, as discussed in Ref. [11]. In the present investigation, it is assumed for simplicity that
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the magnitude of the incidence angle aU is so small that each individual wake vortex, once it is shed off the
trailing edge of the plate, still moves downstream with the velocity of the undisturbed flow as if the angle of
incidence were always aU � 0.

The dynamics of the system with f %

aU
¼ 0 is examined first, i.e., a fixed small angle of incidence. (It should be

mentioned that this may find application in the design of the flexible control surface attached to a rigid wing
[9], where the cantilevered flexible plate is not always parallel to the undisturbed flow.) It can be seen in
Fig. 14(a) that, as compared to the system in the basic configuration (i.e., aU ¼ 0), the plate is subjected to a
static deformation before flutter takes place at sufficiently high UR. For a small incidence angle (aU ¼ 5o),
URc ¼ 9:87 is obtained, which is slightly below the critical point UR

%

c ¼ 9:92 for the system set up in the basic
configuration. As shown in Fig. 14(b), before the onset of flutter, the amplitude of the static deformation
grows as UR increases; and the plate deforms in the first beam mode. But, when UR4URc, the vibration
modes of the system, shown in Figs. 14(c) and (d), are found to be qualitatively the same as those of the system
in the basic configuration (see Ref. [11]). However, the vibration of the plate is not symmetric with respect to
its neutral plane; instead, the static component can be observed in the vibration modes.

When f %

aU
a0, rich dynamics of the system is obtained. The influence of f %

aU
is studied in Fig. 15, in which the

magnitude of the incidence angle is aU ¼ 5o and the frequency is swept from f %

aU
¼ 0 to 20. Note that the

reduced flow velocity UR used in the frequency sweep is UR ¼ 8:94, which is about 10% below the critical
point of either the case of a fixed incidence angle with aU ¼ 5o (as seen in Fig. 14(a), URc ¼ 9:87) or the case of
the system in the basic configuration (i.e., for aU ¼ 0o and f %

aU
¼ 0, for which URc ¼ 9:92).

In Fig. 15(a), resonance phenomena in the frequency–response of the system can be observed. If the
vibration amplitude of the plate is evaluated at the tailing edge, i.e., the point s ¼ 1, three local peaks can be
found: at f %

aU
¼ 1:15, 2:8 and 9:4. However, when observed at the plate mid-length point s ¼ 0:5, the first two

peaks shift to f %

aU
¼ 0:95, 2:81, respectively; moreover, the third peak disappears. It is evident that the primary

resonance of the system occurs at f %

aU
¼ 2:8 (or f %

aU
¼ 2:81 in terms of the amplitude at s ¼ 0:5), where the

plate vibrates with quite a large amplitude. The pattern of the frequency–response shows that an external
excitation [15], i.e., the small oscillating incidence angle, has been applied to the system. However, it should be
noted that, although the oscillation of the incidence angle is an external excitation, the undisturbed flow and
the plate are two inseparable parts of an integrated system; the aero/hydro-dynamic forces caused by the fluid
flow (with a small oscillating angle of incidence) depend on the motions of the plate. Therefore, it does not
make sense to talk about the natural frequency of the plate without taking into account the fluid flow. Under
these circumstances, one cannot expect the secondary resonances of the system to be related to the primary
one via an integer relationship (either subharmonic or superharmonic). In particular, in the current case, the
secondary resonances of the system can be found at f %

aU
¼ 1:15 and 9:4 in terms of the amplitude at s ¼ 1, and

the ratios to the primary resonance of f %

aU
¼ 2:8 are, respectively, 0:4107 and 3:357.

The dynamics of system for the case f %

aU
¼ 2:8 is shown in Figs. 15(b)–(e); one can see that the vibration of

the plate, at the primary resonance point, is very similar to that of the system in the basic configuration [11].
Additionally, it is found that the system vibrates with only one frequency which is exactly the same as the
excitation frequency, i.e., f %

aU
.
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The vibration modes of the system at various values of f %

aU
are shown in Fig. 16, normalized by the

maximum amplitude in each case (not necessarily at s ¼ 1 or 0:5). It is interesting to see that the vibration
modes of the plate depend on f %

aU
. When f %

aU
is small, the plate vibrates in the first beam mode; however, beam

modes of higher order participate in the vibration and become increasingly important in the dynamics as f %

aU

increases. Moreover, when the first and second beam modes are dominant in the dynamics of the system, the
maximum amplitude of the plate takes place at s ¼ 1; while, when beam modes of higher order become
important, the maximum amplitude occurs near the middle of the plate.

When examining the frequency–response in conjunction with the vibration modes of the system, as in
Figs. 15(a) and 16, more important observations with regard to the dynamics of the system can be made. First,
since the vibration mode of the system changes with varying f %

aU
, the resonance points of the system depend on

the point of observation. For example, the secondary resonance occurs at f %

aU
¼ 1:15 if it observed at the point

s ¼ 1, while it is located at f %

aU
¼ 0:95 if the point s ¼ 0:5 is chosen for observing the frequency–response of the

system. Second, at the primary resonance point f %

aU
¼ 2:8 (or f %

aU
¼ 2:81 in terms of the vibration amplitude at

s ¼ 0:5), the plate vibrates in the second beam mode, and the frequency–response curve slightly bends to the
left, which implies a weak softening-type nonlinearity in the fluid–structure interaction system [15]. In
contrast, at the secondary resonance point f %

aU
¼ 1:15 (or f %

aU
¼ 0:95 in terms of the vibration amplitude at

s ¼ 0:5), the frequency–response curve slightly bends to the right; therefore, a hardening-type nonlinearity
arises when the plate vibrates in the first beam mode at low f %

aU
. It should be mentioned that investigations on

the properties of the nonlinearity in a two-dimensional cantilevered flexible plate (modelled using the



ARTICLE IN PRESS

2.5 3.0 3.5
0.0

0.2

-0.2 0.0 0.2
w(s=1)

-4.0

0.0

4.0

dw
(s

=1
)/d

τ

0 5 10 15
τ

-0.2

0.0

0.2

w
(s

=1
)

0 5 10 15
f*

0.0

0.1

0.2

am
pl

itu
de

0.0 0.2 0.4 0.6 0.8 1.0
x

-0.2

0.0

0.2

w

0.0 0.5 1.0 1.5
0.015

0.020

6 9 12 15
0.000

0.005
0.0 0.5 1.0 1.5

0.050

0.060

0.070

0 5 10 15 20
f*α

0.0

0.1

0.2

m
ax

( w
(s

=1
), 

w
(s

=0
.5

))

(a)

(b) (c)

(d) (e)

Fig. 15. The frequency–response of a cantilevered flexible plate in axial flow with a small oscillating incidence angle, where aU ¼ 5o and

the value of f %

aU
is swept from 0 to 20. (a) Frequency–response of the system; (b–e) the dynamics of the system when f %

aU
¼ 2:8: (b) time

history, (c) vibration modes, (d) phase-plane plot, and (e) vibration frequency. The other parameters of the system are m ¼ 0:2, UR ¼ 8:94,
l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0. In subfigure (a): solid line, wðs ¼ 1Þ; dashed-line, wðs ¼ 0:5Þ.
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inextensibility assumption), instead of the whole fluid–structure interaction system, were previously conducted
by Anderson et al. [16] and Tang et al. [14], and similar conclusions have been reached. Finally, when f %

aU
is

close to zero, the plate vibrates in the first beam mode with an amplitude smaller than that of the static
buckling state obtained using f %

aU
¼ 0.

7. Concluding remarks

In the present paper, the dynamics of four variants of two-dimensional cantilevered flexible plates in axial
flow are studied: with (i) a gravitational force, (ii) a spring support, (iii) a concentrated mass, and (iv) an
oscillating incidence angle in the undisturbed flow. Additional parameters arise in the model of the system
when a new feature is taken into account; their influence on the dynamics of the system, in terms of the
magnitude and/or location in the case of (ii) and (iii), are investigated. It has been shown that the new features
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added to the system may qualitatively alter the dynamics, both in terms of the critical point and the post-
critical behaviour. Some interesting findings, for example, buckled states, chaotic motions, stronger-
constraint/less-stable-system phenomenon, jerk-like motions, and complicated patterns of frequency–response
are summarized in this paper.
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